If it's not what You are looking for type in the equation solver your own equation and let us solve it.
15x^2-26x-80=0
a = 15; b = -26; c = -80;
Δ = b2-4ac
Δ = -262-4·15·(-80)
Δ = 5476
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{5476}=74$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-26)-74}{2*15}=\frac{-48}{30} =-1+3/5 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-26)+74}{2*15}=\frac{100}{30} =3+1/3 $
| (x+6)^2-90=0 | | y^2+10y+34=0 | | 27+x+x=180 | | -2(u+7)=8u-44 | | 9(z+4)+2=-3-10(z-10) | | 3(5+x)=5(7-(-2) | | 276=2w+4w-12 | | 8-2|4-5y|=4 | | (3x+4)(3x-4)=-(x-1)(x-10) | | 7(r+5)+3=-9-3(r-6) | | 3(5x-7)+2(9x-11)=4(8x-7)-110 | | 35/x+1=7/4 | | 2y-5y-3y=0 | | 64-2y+4y=100 | | 3x+26-40=4x-36 | | (4x-3)^2+(4x+3)^2=25 | | 3x+13=x+16 | | 3(c-4)=-3 | | (5(2k-3)-3(k+4)/3k+2)k=2 | | (4x-3)2+(4x+3)2=25 | | -6y+-10=-4 | | y/4=y+3/8 | | 9-3w=42 | | -0.6-0.5u=-0.142 | | 5(t-4)=9(7-3 | | 3/35=h/80 | | 4(8+m)-1=4m-21 | | .5x+7=9 | | Y+7x=11;x=-1,0,2 | | Y+5x=8;x=-1,0,4 | | 12x+36=28x+11 | | 4n-9=14n |